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The space-time chaotic patterns associated with a class of dynamical systems ranging from delayed to
extended maps are investigated. All the systems are constructed in such a way that the corresponding
two-dimensional (2D) representation is characterized by the same updating rule in the bulk. The main
difference among them is the direction of the “time” axis in the plane. Despite the different causality re-
lations among the various models, the resulting patterns are shown to be statistically equivalent. In par-
ticular, the Kolmogorov-Sinai entropy density assumes always the same value. Therefore, it can be con-
sidered as an absolute indicator, measuring the amount of disorder of a 2D pattern. The Kaplan-Yorke
dimension density is instead rule dependent: this indicator alone cannot be used to quantify the degrees
of freedom of a given pattern; one must further specify the direction of propagation in the plane.

PACS number(s): 05.45.+b, 42.50.Lc

It is well known that low-dimensional chaotic signals
can be characterized by well defined statistical indicators
such as fractal dimension, entropy, and Lyapunov ex-
ponents [1]. Moreover, embedding theorems guarantee
that it is possible, at least in principle, to reconstruct the
underlying attractor. Less developed is the characteriza-
tion of complex two-dimensional (2D) patterns associated
with the high-dimensional dynamics of both spatially ex-
tended [2] and delayed systems [3]. As a first step in this
direction, densities of entropies and of dimensions have
been successfully introduced [4], suggesting that a
dynamical system can be seen as a collection of many in-
dependent subsystems. A further issue arising in the
analysis of 2D patterns is the occurrence of propagation
phenomena not only in time, but also along the spatial
direction. Comoving [5] and specific [6] Lyapunov ex-
ponents have been introduced in this context to account
for the spreading of localized perturbations. In this pa-
per we proceed further by comparing the patterns gen-
erated by the same rule iterated along different directions.

In the first part, we focus on the fairly wide class of de-
layed maps introduced in [7], clarifying to what extent
they can be considered as equivalent to the commonly
used coupled map lattices (CMLs) [8]. This is done in
two steps: first, the typical 2D representation of delayed
systems is introduced; then, the resulting model is
mapped to a CML with asymmetric coupling by rotating
the spatiotemporal reference frame. However, the
equivalence is only formal, since different causality rela-
tions are present in the two cases: some future events in
the delayed map are indeed past events in the CML rep-
resentation and vice versa. Nevertheless, a careful quan-
titative investigation of the resulting patterns (by measur-
ing Lyapunov spectra, correlation functions, block entro-
pies, and effective dimensions) reveals a perfect invari-
ance, suggesting that the same bulk rule is sufficient to
guarantee a statistical equivalence.
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In the second part, we introduce a more general class
of dynamical systems which are intermediate between the
delayed map and the CML. They correspond to generat-
ing a pattern by moving along different “time” directions
in the plane. The determination of the Lyapunov spec-
trum in this family of models confirms that the
Kolmogorov-Sinai entropy density is independent of the
way the pattern is generated. Therefore, it is an absolute
indicator of the disorder present in the reference pattern.
Conversely, the fractal dimension, as computed from the
Kaplan-Yorke formula, depends on the specific direction.
Thus we cannot attribute a number of effective degrees of
freedom to a given pattern: one must further specify the
direction followed in either reading or generating the pat-
tern itself. On the one hand, this result is somehow unex-
pected since the dimension is a static quantity referring
to the invariant measure. On the other hand, the depen-
dence of the dimension on the orientation can be seen as
a measure of the anisotropy present in the pattern.

The most general updating rule for a discrete-time de-
layed system is

Xy +1=F(xp,%, 41-1) 5 (1)

where the delay T represents also the phase-space dimen-
sion and F is a nonlinear mapping function from a given
square I XI into the interval I. Such a mapping can be
seen as the discretization of a differential equation of the
type x(2)=g(x(¢),x(¢t—7)). Upon rewriting the time
variable as

n=s+tT , (2)

where ¢ is the integer part of n /T, each label n can be
identified by the space- and timelike variables s and ¢, re-
spectively. By following this convention, the one-
dimensional sequence of data is rearranged as a two-
dimensional pattern. Accordingly, the evolution equa-
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tion (1) can be interpreted as a mapping on a lattice of
length T,

yitl=Fltlyh), s=1,...,T, (3)

with the one-sided boundary condition y(’)+1 =ypr [9]. At
variance with usual coupled maps, where the lattice
configuration is updated synchronously, in Eq. (3) we
must proceed sequentially from s =1 to T. This is clearly
a consequence of s not being a truly spatial variable. To
recover the properties of the standard CML model we
also rescale the time units by 7" [7]. One of the advan-
tages of this formulation is that the long-range coupling,
implicit in Eq. (1), can now be seen as a local interaction.
The price that we have to pay is the increase of the state-
space dimension: we pass from a zeroth-dimensional to a
1D extended system. This is a rather well known pro-
cedure [10].

Obviously, the exchange of delayed and local variables
(DL transformation) in Eq. (1) leads, in general, to a
different dynamics, unless the map F is DL invariant.
However, if spatial and temporal variables also are ex-
changed (ST transformation), the initial bulk dynamical
rule is recovered. Nevertheless, the boundary conditions
are drastically different, so that it is not obvious whether
the overall evolution is truly invariant under the compo-
sition of both transformations.

Let us now consider a last transformation that allows a
more precise mapping of the dynamics (1) onto a CML
model. By introducing a reference frame rotated by 7 /4
(see Fig. 1), we can label every point with the integers
i=s+tand j=s—t. After denoting the new variable as
z}, map (3) reads as

2;+1:F(Z;—1’Z}+1) . 4)
i+1

The lack of the coupling of z; " with z j’ in Eq. (4) implies

FIG. 1. Coupling scheme for the bidimensional representa-
tion of map (1). The map can be written as (4) in the tilted refer-
ence frame provided that we introduce an (independent) sublat-
tice (full dots) and relabel the indices.
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the existence of two distinct sublattices (open and full cir-
cles in Fig. 1) characterized by independent evolutions.
Although Eq. (4) resembles the usual limit case e= of a
standard CML with diffusive coupling, here the left-right
symmetry is, in general, lacking (unless F is DL invari-
ant).

Since the updating procedure defined by Eq. (4) is syn-
chronous, one might think that delayed maps can be nat-
urally studied as usual CMLs [11]. However, there
remains a crucial difference concerning the boundaries.
In fact, we still have a one-sided condition, but now z}*!
(the chain is shifting rightward) is a function of all
z} (i =j<i+T). Referring again to Fig. 1, it is immedi-
ately understood that, since y§ depends on y}”, it also
depends implicitly on (y+_},y% 2). By repeating the
same considerations, we have that
yi=Gy!i Lyt 2, ... ,yE7T), where G is some compli-
cated function obtained by the proper compositions of F.
The consequence of such a condition can by no means be
considered as a “surface” effect; we are rather in the pres-
ence of a global nondemocratic coupling.

Let us specialize our analysis to the case [7]

Xpp1=(1—e)f1(x,)+efr(x, 41-7), )

where f| and f, are two maps of the unit interval and
0=ge=1 gauges the relative weight of the delayed cou-
pling with respect to the instantaneous one. The previous
considerations lead to following three different maps:

SH=(1=e)f (/) +ef,(p) (model 4), ©
S =(1—e)f () +ef2(p;%]) (model B), @
z;'“:(l—s)f,(z;_])+8fz(2;+1) (model C) . (8)

Model 4 is nothing but the bidimensional version of Eq.
(5); model B is its DL transform; model C is the CML
version corresponding to Eq. (4) with periodic boundary
conditions assumed.

Since we want to compare the statistical properties of
the chaotic patterns obtained by models 4 —C, let us be-
gin with a case susceptible of analytic treatment, i.e., we
choose f; and f, as two distinct Bernoulli shifts
fi1{x)=ax mod(1), and f,(x)=bx mod(1), with a and b
being two positive constants. In Ref. [7] it was demon-
strated that, for T large enough, the Lyapunov spectrum
of model A is made of an “anomalous” (i.e., proportional
to the delay) component

AG=TIn[a(1—¢)], 9)
present only if A% >0, i.e., for e <(a —1)/a, and of a con-
tinuous component

b2e?
1+a%(1—¢)*—2a(1—¢)coswé |’

AA@=%m (10)

where the index £ (0=<£=<1) is the integrated density of
Lyapunov exponents. The spectrum Az of model B is ob-
tained by simply exchanging a and b in (9) and (10).
Finally, the Lyapunov spectrum of map C can be easily
calculated [12] by noticing that, due to the periodic
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boundary conditions, the evolution matrix in tangent
space commutes with the translation operator, yielding

}»C(§)=%ln[b2(1—s)2+a82+2¢1be(1—s)cos1r§] . an

The three spectra are, in general, different from one
another.

From the knowledge of the Lyapunov spectrum, one
can infer both the Kolmogorov-Sinai entropy and the di-
mension of the attractor. From the Pesin relation we can
evaluate the entropy density K as the sum of all the posi-
tive exponents divided by 7. In the thermodynamic limit
we have

K p= ?,B_}_f)‘A,B(g)dg ’
Kc= [Ac(&)dE

where the integrals are extended to the positive part of
the spectrum. Although an analytic expression of the en-
tropy is to our knowledge not available, the numerical in-
tegration of Egs. (12) reveals that K , =Kz =K, for every
value of the coupling parameter.

The Lyapunov dimension density D¢y of the attractor
can be implicitly evaluated by means of the Kaplan-
Yorke formula

(12)
(13)

D
J, T mgag=o. (14)

The computation of Dgy in the three models shows that
the dimension is different for the three maps.

To test the generality of these results we have per-
formed numerical simulations in the case of f, being the
logistic map [f,(x)=4x(1—x)] and f; the Bernoulli
shift with slope a. The three models are again character-
ized by different Lyapunov spectra for all € values, lead-
ing to different dimensions as reported in Fig. 2(a). Nev-
ertheless, the same entropy density is always obtained as
seen in Fig. 2(b). An intuitive explanation of this result is
obtained by noticing that the amount of information con-
tained in a given 2D pattern is the sum of a bulk contri-
bution plus the incoming flux through the boundaries. In
the thermodynamic limit, the latter contribution is
asymptotically negligible, as it increases only with the
number of sites along the perimeter. By recalling that the
dynamical equations are equivalent in the three models,
we can conclude that the Kolmogorov-Sinai entropy den-
sity is independent of the boundary conditions. On the
other hand, the dimension seems to be strongly affected;
it is therefore important to clarify to what extent the
three spatiotemporal patterns are equivalent to each oth-
er.

To this aim we have computed several statistical indi-
cators, starting from the spatiotemporal autocorrelation
function

Cie (xtxLZl)—(x)?
S (x)—(x)?

The results for model C is reported in Fig. 3(a). The oth-
er two models exhibit the same structure apart from ei-

(15)
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ther the expected reflection or rotation. A more quanti-
tative comparison is produced in Fig. 3(b), where the
correlation function is plotted along equivalent axes (spa-
tial axis for model A4, time axis in model B, and bisectrix
in model C). The three curves are practically indistin-
guishable confirming the equivalence of the patterns.

In order to reveal more subtle correlations we have
suitably encoded the data to perform a standard informa-
tion theoretic study. The procedure simplifies if £, =f,,
since in this case the DL transformation simply amounts
to an exchange of € with 1—e. The usual encoding pro-
cedure corresponds to associating O to values of the vari-
able less than 1 and 1 otherwise. We have then numeri-
cally estimated the probability P{¥*™) for any block i of
NXM symbols to appear in the pattern, for
f1=f,=4x(1—x). The same probability is found for
the corresponding blocks (obtained, for example, by ex-
changing s with the ¢ axis in passing from model 4 to B).
This equivalence extends the above mentioned coin-
cidence of the Kolmogorov-Sinai entropy of the three
processes to the fluctuations of this quantity.

The above results reveal increasing evidence that the
patterns produced by the three processes are equivalent
to each other. The only exception seems to be represent-
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FIG. 2. (a) Kaplan-Yorke dimension density and (b)
Kolmogorov-Sinai entropy density versus the coupling parame-
ter for models A4 (full dots), B (open dots), and C (dashed line)
with f(x)=1.2x mod(1), f,(x)=4x(1—x), and T=80.
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ed by the Lyapunov spectra (and, in turn, by the
Kaplan-Yorke dimension) which are different in the three
models. However, this diversity can be understood by
noticing that Lyapunov exponents, as well as correlation
functions, refer to a specific space-time direction. There-
fore, one should more properly compare the usual “tem-
poral” Lyapunov spectrum of model A4 with the “spatial”
one [13] of model B.

The evidence that the dimension cannot be considered,
at variance with the entropy, as an absolute quantity
characterizing a given pattern may appear somehow
unusual. We then investigated directly the fractal prop-
erties of the invariant measure by means of the nearest-
neighbor algorithm [14]. More precisely, we computed
the effective dimension

-1
_ | d{Ind(P,E,N,r))
d InN ’

D,(N)= (16)

where P is a reference point, E is the embedding dimen-
sion, 8(P,E,N,r) is the distance of P from its rth nearest
neighbor among N randomly chosen points, and { )
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FIG. 3. (a) Bidimensional correlation function for model C
and (b) its section along equivalent axis for models 4, B, and C,
with f(x)=f,(x)=4x (1—x), €=0.1, and T=1024.

denotes the average over the set of reference points. We
performed several dimension estimates for an embedding
dimension E =10 and for the tenth neighbor (different
choices give qualitatively similar results). In Fig. 4(a),
three effective dimensions are compared: both diamonds
and open dots refer to spacelike vectors
Wyiit, - - ¥iig_q) for €=0.1, but T=E=10 and
100, respectively, in the two cases. Full dots refer to
timelike vectors (p/,p!*L, ... ,p!TE"1) for £=0.9.
Several comments are in order. First of all, an embed-
ding dimension E equal to T is, by definition, sufficient to
reconstruct the attractor topology and dimension (in-
cidentally, the saturation value is close to the asymptotic
value predicted by Kaplan-Yorke formula). The curve
obtained for T'>>FE does not reveal any saturation. In
fact, this case corresponds to projecting down a high-
dimensional attractor onto an E-dimensional space, in
complete analogy to what already observed in CMLs
[15]. Much more interesting is the good overlap between
open and full dots: it expresses once more the invariance
of the dynamics under DL (e—1—¢) plus ST (spacelike
— timelike vectors) transformations. Indeed, because of
the open boundary conditions implicitly assumed along
the time axis, the measure associated with timelike vec-
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FIG. 4. Effective dimensions D, measured with a nearest-
neighbor algorithm (see text); in all cases 10° neighbors were
considered.



51 STATISTICAL PROPERTIES OF BIDIMENSIONAL PATTERNS . ..

tors is always the result of the projection of an infinite-
dimensional attractor. Therefore, Fig. 4(a) confirms that
statistically the same pattern is generated by using the
same bulk rule, in spite of the strikingly different bound-
ary conditions. The data plotted in Fig. 4(b) refer to the
symmetric case, where space and time axes are ex-
changed. The agreement among the three curves is a
consequence of the higher Kaplan-Yorke dimension. Al-
ready for T=10, a much larger number of points is need-
ed to reach the same resolution and to observe the satura-
tion to the expected value. The main result of the simula-
tions reported in Fig. 4 is the difference between the
curves in panel (a) with those in panel (b), i.e., the depen-
dence of the dimension on the orientation of the time
axis. The same pattern, imagined as being generated
along two orthogonal directions, reveals a different num-
ber of effective degrees of freedom. In order to better un-
derstand this point, we have considered 1D lattices
oriented in different ways in the plane. The dashed line
in Fig. 5 refers to a tilted state with (average) slope v =1.
At variance with Fig. 1, horizontal and vertical directions
correspond to i and j axes (model C). One should
remember also that only the dynamics on one of the two
independent sublattices (open circles) is considered.
Configurations with any slope can be obtained by suitably
combining two different types of bonds: horizontal ones
connecting site i with i +2 and /4 tilted ones connect-
ing neighboring sites. The extremum cases v ==*1 coin-
cide with the delayed systems. After renumbering all the
consecutive sites belonging to a given configuration, the
mapping is rewritten in still another way which preserves
the bulk evolution. The difference is again concentrated
on the boundary conditions which are assumed to be
periodic along the chain. By comparing a given state
with the new one (solid line in Fig. 5), we find two
different cases: either the variable y is updated from its
past values in the neighboring sites or the newly updated
y on the right neighbor is required. This means that syn-
chronous and asynchronous updating rules are mixed up.
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FIG. 5. Coupling scheme for the iteration of the map in a
tilted reference frame with slope v = 1.
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The Lyapunov spectrum has been computed for several
values of the velocity in the allowed v range [ —1,1] and
for e=0.3. We have then determined K (v), Dgy(v), and
the dimension density D, of the unstable manifold (i.e.,
the fraction of positive Lyapunov exponents). The entro-
py K (v) turns out to be the same for all slopes v. This re-
sults extends the equality previously found in the extreme
cases of models 4 —C to a generic tilting. Let us remark
that the independence of K on v is not trivial, since the
number of positive Lyapunov exponents contributing to
K exhibits notable fluctuations with v, as shown in Fig.
6(a) (full circles). The dimension Dy also depends on v
as seen in Fig. 6(a) (open circles). For v=1, —1, and O,
the known results for models A4, B, and C, respectively,
are recovered. The variation of Dgy with v is the key re-
sult of the simulations. It confirms that the dimension is
not an absolute indicator to be associated with a given
2D pattern.

Finally, we have reported in Fig. 6(b) the maximum
Lyapunov exponent versus v. The numerical data reveal
a divergence for v —1. This result is connected with the
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FIG. 6. (a) The Kaplan-Yorke dimension density Dgy (open
dots) together with the fraction of positive exponents D, (full
dots) and (b) the maximum Lyapunov exponent A,,,, versus v for
€=0.3 and T=48. The spectra have been computed iterating
the map 2% times.
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presence of an anomalous exponent which arises when
the updating rule becomes entirely asynchronous.

The dependence of A ,, on v must not be confused
with that of the maximal comoving Lyapunov exponent
[5S]. The former one is the growth rate of a statistically
uniform perturbation distributed along the line i=vj.
The latter one is the growth rate of an initially localized
perturbation, observed along the world line j =vi. How-
ever, as the comoving Lyapunov exponents have been
shown to be related to the class of specific exponents in-
troduced in [6], we think that this new set of exponents is
not independent of the previous ones. The study of possi-
ble connections is currently under investigation.

The reason why the slope v cannot exceed an absolute
value of 1 is that in the CML representation, the max-
imum velocity of propagation of disturbances is just *1.

Along a direction outside the light cone, the iteration of
the dynamical rule requires inverting the local map;
therefore, the evolution is expected to resemble the back-
ward iteration of the lattice: the relevant invariant mea-
sure, rather than being a (strange) attractor, becomes a
(strange) repellor. This is also the reason why the entro-
py as computed from the sum of the positive Lyapunov
exponents along the spatial direction [6] can no longer be
equal to the Kolmogorov-Sinai entropy: part of the local
linear instability does not contribute to the information
flow, but to the escape from the repellor [16].

Among the points not yet clarified in this work and the
questions newly opened, we consider the possibility of ex-
tending the above concepts to continuous patterns as the
most challenging one. We hope to be able to make some
sensible progress in this direction, in the near future.

[1] D. Ruelle and J. P. Eckmann, Rev. Mod. Phys. 57, 617
(1985).

[2] P. Manneville, Dissipative Structures and Weak Tur-
bulence (Academic, San Diego, 1990).

[3]1 M. C. Mackey and L. Glass, Science 197, 287 (1977); K.
Ikeda and K. Matsumoto, J. Stat. Phys. 44, 955 (1986).

[4] P. Grassberger, Phys. Scr. 40, 346 (1989).

[S]R. J. Deissler and K. Kaneko, Phys. Lett. A 119, 397
(1987).

[6] A. Politi and A. Torcini, Chaos 2, 293 (1992).

[7]1S. Lepri, G. Giacomelli, A. Politi, and F. T. Arecchi, Phy-
sica D 70, 235 (1994).

[8] K. Kaneko, Prog. Theor. Phys. 72, 980 (1984).

[9] The same kind of mapping arises in the numerical solution

technique for first-order delay-differential equations; see J.
D. Farmer, Physica D 4, 366 (19,82).

[10] T. Vogel, Théorie des Systemes Evolutifs (Gauthier-Villars,
Paris, 1965); F. T. Arecchi, G. Giacomelli, A. Lapucci,
and R. Meucci, Phys. Rev. A 45, 4225 (1992).

[11] The inverse analogy was noticed in F. H. Willeboordse,
Int. J. Bif. Chaos 2, 721 (1992).

[12] S. Isola, A. Politi, S. Ruffo, and A. Torcini, Phys. Lett. A
143, 365 (1990).

[13] G. Giacomelli and A. Politi, Europhys. Lett. D 15, 387
(1991).

[14] R. Badii and A. Politi, Phys. Rev. Lett. 52, 1661 (1984).

[15] A. Politi and G. P. Puccioni, Physica D 58, 384 (1992).

[16] T. Tel, Phys. Rev. A 36, 1502 (1987).



